博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Python 学习笔记之——用 sklearn 对数据进行预处理
阅读量:6078 次
发布时间:2019-06-20

本文共 3542 字,大约阅读时间需要 11 分钟。

1. 标准化

标准化是为了让数据服从一个零均值和单位方差的标准正态分布。也即针对一个均值为 $mean$ 标准差为 $std$ 的向量 $X$ 中的每个值 $x$,有 $x_{scaled} = \frac{x - mean}{std}$。

>>> from sklearn import preprocessing>>> import numpy as np>>> X_train = np.array([[ 1., -1.,  2.],...                     [ 2.,  0.,  0.],...                     [ 0.,  1., -1.]])>>> X_scaled = preprocessing.scale(X_train)>>> X_scaled                                          array([[ 0.  ..., -1.22...,  1.33...],       [ 1.22...,  0.  ..., -0.26...],       [-1.22...,  1.22..., -1.06...]])>>> X_scaled.mean(axis=0)array([0., 0., 0.])>>> X_scaled.std(axis=0)array([1., 1., 1.])

默认针对每列来进行标准化,也即针对每个特征进行标准化。可以通过设置 axis=1 来对每行进行标准化,也即对每个样本进行标准化。

此外,我们还可以用训练数据的均值和方差来对测试数据进行相同的标准化处理。

>>> scaler = preprocessing.StandardScaler().fit(X_train)>>> scalerStandardScaler(copy=True, with_mean=True, with_std=True)>>> scaler.mean_                                      array([1. ..., 0. ..., 0.33...])>>> scaler.scale_                                       array([0.81..., 0.81..., 1.24...])>>> scaler.transform(X_train)                           array([[ 0.  ..., -1.22...,  1.33...],       [ 1.22...,  0.  ..., -0.26...],       [-1.22...,  1.22..., -1.06...]])>>> X_test = [[-1., 1., 0.]] # 用同样的均值和方差来对测试数据进行标准化>>> scaler.transform(X_test)                array([[-2.44...,  1.22..., -0.26...]])

2. 将数据缩放到一定范围

有时候,我们需要数据处在给定的最大值和最小值范围之间,常常是 0 到 1 之间,这样数据的最大绝对值就被限制在了单位大小以内。

>>> X_train = np.array([[ 1., -1.,  2.],...                     [ 2.,  0.,  0.],...                     [ 0.,  1., -1.]])...>>> min_max_scaler = preprocessing.MinMaxScaler()>>> X_train_minmax = min_max_scaler.fit_transform(X_train)>>> X_train_minmaxarray([[0.5       , 0.        , 1.        ],       [1.        , 0.5       , 0.33333333],       [0.        , 1.        , 0.        ]])>>> X_test = np.array([[-3., -1.,  4.]]) # 将同样的变换应用到测试数据上>>> X_test_minmax = min_max_scaler.transform(X_test)>>> X_test_minmaxarray([[-1.5       ,  0.        ,  1.66666667]])

当 MinMaxScaler() 传入一个参数 feature_range=(min, max),我们可以将数据缩放到我们想要的范围内。

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))X_scaled = X_std * (max - min) + min

此外,我们还可以将数据限制在 [-1, 1] 之间,通过除以每个特征的最大绝对值。

>>> X_train = np.array([[ 1., -1.,  2.],...                     [ 2.,  0.,  0.],...                     [ 0.,  1., -1.]])...>>> max_abs_scaler = preprocessing.MaxAbsScaler()>>> X_train_maxabs = max_abs_scaler.fit_transform(X_train)>>> X_train_maxabs               array([[ 0.5, -1. ,  1. ],       [ 1. ,  0. ,  0. ],       [ 0. ,  1. , -0.5]])>>> X_test = np.array([[ -3., -1.,  4.]])>>> X_test_maxabs = max_abs_scaler.transform(X_test)>>> X_test_maxabs                 array([[-1.5, -1. ,  2. ]])>>> max_abs_scaler.scale_         array([2.,  1.,  2.])

3. 归一化

归一化的目的是让每个样本具有单位范数。也即针对向量 $X$ 中的每个值 $x$,有 $x_{normalized} = \frac{x}{||X||}$。

>>> X = [[ 1., -1.,  2.],...      [ 2.,  0.,  0.],...      [ 0.,  1., -1.]]>>> X_normalized = preprocessing.normalize(X, norm='l2')>>> X_normalized                                      array([[ 0.40..., -0.40...,  0.81...],       [ 1.  ...,  0.  ...,  0.  ...],       [ 0.  ...,  0.70..., -0.70...]])>>> normalizer = preprocessing.Normalizer().fit(X)  # fit does nothing>>> normalizerNormalizer(copy=True, norm='l2')>>> normalizer.transform(X)                            array([[ 0.40..., -0.40...,  0.81...],       [ 1.  ...,  0.  ...,  0.  ...],       [ 0.  ...,  0.70..., -0.70...]])>>> normalizer.transform([[-1.,  1., 0.]])             array([[-0.70...,  0.70...,  0.  ...]])

默认是对每行数据用 $L2$ 范数进行归一化,我们也可以选择 $L1$ 范数或者针对每列进行归一化。

获取更多精彩,请关注「seniusen」!

转载地址:http://kghgx.baihongyu.com/

你可能感兴趣的文章
一步一步学习SignalR进行实时通信_7_非代理
查看>>
AOL重组为两大业务部门 全球裁员500人
查看>>
字符设备与块设备的区别
查看>>
为什么我弃用GNOME转向KDE(2)
查看>>
Redis学习记录初篇
查看>>
爬虫案例若干-爬取CSDN博文,糗事百科段子以及淘宝的图片
查看>>
Web实时通信技术
查看>>
第三章 计算机及服务器硬件组成结合企业运维场景 总结
查看>>
IntelliJ IDEA解决Tomcal启动报错
查看>>
默认虚拟主机设置
查看>>
php中的短标签 太坑人了
查看>>
[译] 可维护的 ETL:使管道更容易支持和扩展的技巧
查看>>
### 继承 ###
查看>>
数组扩展方法之求和
查看>>
astah-professional-7_2_0安装
查看>>
函数是对象-有属性有方法
查看>>
uva 10107 - What is the Median?
查看>>
Linux下基本栈溢出攻击【转】
查看>>
c# 连等算式都在做什么
查看>>
使用c:forEach 控制5个换行
查看>>